RANJIT SINGH

Assistant Professor

Dept. of Botany, K. N. Govt.P. G. College gyanpur, Bhadohi

MCQ for M. Sc.(iv) sem. Botany (Tissue culture &Biotechnology)

TIME HOURS			MM
NOTE- 1) : All question	ons are compulsory.		
2):There is no only	negative marking, Ans	wers are to be recorde	d on the OMR Answer shee
1.Plant biotechnolog	y involves		
a production of valu	able products in plants	b) rapid clonal mult	iplication of desired genotype
c) production of virus	s free plants	d) all of these	
2. The most common	solidifying agent used in	micropropagation is	
a) agar	b) dextran	c) Mannan	d) all of these
3. The culturing of ce	lls in liquid agitated medi	um is called	
a) liquid culture	b) micro propagation	c) Agar culture	d) suspension culture
4. Which of the follow	wing is best suited method	d for production of virus f	ree plants
a)embryo culture	b) meristem cultur	e c) ovule culture	d) anther culture
5. Batch cultures are	type of suspension cultur	e where	
a) medium is continu	ously replaced	b) medium is loa	ded only at the beginning
c) no depletion of me	edium occurs d) ce	llular wastes are continue	ously removed and replaced
6. Immobilized cell b	ioreactors are based on		
a) cells cultures in so	lid medium	b) cells cultured in lic	quid medium
c) cells entrapped in	gels	d) all of these	
7. All are plant derive	ed alkaloids except		
a) menthol	b) nicotine c) q	uinine d) co	odeine
8 Flicitors are molec	ules that		

a) induce cell divison		b) stimulate producti	on secondary metabolites
c) stimulate hairy root fo	ormation that accumu	late secondary metabolite	es d) none of these
9. All are plant derived e	licitors except		
a) chitin	b) pectin	c) cellulose	d) pectic acid
10. The modification of	exogenous compound	s by plant cells is called	
a) Biotransformation	b) bioconversion	c) both a and b	d) biophytomodification
11. Artificial seeds are			
a) seeds produced in lab	oratory condition	b) seed	ds encapsulated in a a gel
c) somatic embryos enca	psulated in a gel	d) zygotic emb	ryos encapsulated in a gel
12. Hairy root cultures twiths	for secondary metabo	olite production are induc	ed by transforming plant cells
a) virus		b) Agrobacter	ium tumefaciens
c) Bacillzus thuringiensis		d) Agrobacte	erium rhizogenes
13. The variation in invit	ro culture is called as		
a) invitro variation	b) mutation	c) somaclonal variatio	n d) all of these
14. Haploid plants are p	oduced in large numb	pers by	
a) anther culture	b) Ovary culture	c) both a and b	d) embryo culture
15. Cybrids are			
a) nuclear hybrids		b) hybrid plants derived fi	rom cross pollination
c) cytoplasmic hybrids		d) cytological hybrids	
16.In plant tissue culture	e, what is term ORGAI	NOGENESIS mean ?	
a) formation of callus cu	lture b) formation of root and sh	oot from callus culture
c) genesis of plants	d) r	none of the above	
17. A recombinant DNA	molecule is produced	by joining together	
1. one mRNA with a DNA	\ segment	2. one mRNA wi	th a tRNA segment
3. two mRNA molecules		4. Two DNA segr	nents

18. A gene produced	I for recombinant DNA	A technology contains a	gene from one organism joined to			
the regulatory seque	ence of another gene.	Such a gene is called				
1. oncogene	2. junk gene	3. chimeric gene	4. None			
19. A group of genetically similar organisms obtained by asexual reproduction is called						
1. Clone	2. Population	3. Assembly	4. None			
20. To be useful in the	ne preparation of reco	ombinant DNA, a plasmic	d must have			
1. No origin of replic	ation	2. An origin of replicat	tion			
3. The ability to alte	rnate between the lin	ear and circular forms	4. Restriction endonuclease activity.			
21. Restriction endo	nucleases have the al	pility of cutting				
1. RNA at random si	tes	2. DNA at speci	fic sites			
3. Both a and b		4. DNA and RNA	A at random sites			
22. Endonucleases, a group of enzymes cleave DNA						
1. Externally	2. Internally	3. Both 1 and 2	4. Neither a nor b			
23. The extra chrom	osomal, self replicatir	ng, double stranded, clos	ed, circular DNA molecules are			
called						
1. Plasmids	2. Phages	3. Viruses	4. Chloroplasts			
24. A plasmid consisting of its own DNA with a foreign DNA inserted into it is called						
1. recombinant DNA		2. non-codin	g DNA			
3. junk DNA		4. none of the	e above			
25. Insulin, a protein, consisting of						
1. 2 Polypeptide cha	ins	2. 3 Polypep	tide chains			
3. 4 Polypeptide cha	ins	4. more than	1 4 Polypeptides chains			
26. The first human	protein produced thro	ough recombinant DNA t	echnology is			
1. insulin	2. Erythropoitin	3. Interferon	4. ABA			
27. Humulin, a genetically engineered insulin was produced for the first time by						

1. Biocon India Li	mited	2. Glaxo	3. Elililly and	Company	4. Cipla
28. The first licer	ced drug prod	uced through g	enetic engine	ering is	
1. interferon	2. insulin	3. Pe	nicillin	4. somatotropir	1
29. Before the pr	oduction of re	combinant insu	lin, insulin for	the treatment of	diabetes in human was
obtained from					
1. healthy huma	ns 2. dead human body				
3. cows and pigs			4. dogs and	d cats	
30. The first plas	mid used for t	he production o	of recombinan	t insulin is	
1. pBR 322	2. Ti plasmid	3. ACY 17	4. pU	C 18	
31. In one of the	techniques of	recombinant in	sulin producti	on the genes for a	and β polypeptides
were inserted in	to the plasmid	by the side of			
1. ori		2. (3 - galactosida	se gene	
3. antibiotic resis	stant gene	4	l. restriction e	endonuclease gene	•
32. During recom	binant insulin	synthesis, the l	ond between	insulin polypeption	de and galactosidase
can be removed	by using				
1. cyanogen bror	mide		2. chymotry	psin	
3. carboxy peption	dase		4. amylase		
33. Prior to the p	roduction of re	ecombinant ins	ulin, insulin ol	otained from cows	and pigs were given to
patients. Some o	f the problems	faced by this t	reatment was		
1. the insulin was	s not active				
2. in some huma	ns it induced a	ntibody produc	tion		
3. it reduces the	weight of pation	ents			
4. loss of memor	y power				
34. A plant called	l Rauvolfia ser _l	<i>pentina</i> is unde	r the threat of	extinction. To sav	ve this plant, which
technique is high	ly useful?				

1. genetic engineering

2. DNA finger printing

3. hybridoma technology

- 4. in vitro culture
- 35. Which group of enzymes are popularly called "Molecular stichers"
- 1. restriction Endonuclease
- 2. ligases

3. RNA polymerase

- 4. DNA polymerase
- 36. A clone is a group of organisms produced by
- 1. asexual method and genetically similar
- 2. asexual method and genetically dissimilar
- 3. sexual method and genetically similar
- 4. sexual method and genetically dissimilar
- 37. Match the following:
- 1. Restriction endonuclease

p. Kary Mullis

2. DNA Finger printing

q. Kohler and Milstein

3. Polymerase chain reaction

r. Alec Jaffreys

4. Monoclonal antibodies

s. Arber

1. 1-s, 2-r, 3-p, 4-q

2. 1-s, 2-r, 3-q, 4-p

3. 1-q, 2-r, 3-p, 4-s

- 4. 1-s, 2-p, 3-q, 4-r
- 38. Some of the steps involved in Gene Cloning are given below
- i) Insertion of isolated gene to the vector
- ii) Introduction of recombinant vector to the host
- iii) Isolation of desired gene
- iv) Expression of recombinant gene in host
- v) Extraction of recombinant gene product

The correct sequence of steps involved are

- 1. iii, i, iv, ii, v 2. iii, i, ii, iv, v 3. i, ii, iii, iv, v
- 4. ii, i, iii, iv, v

39. A gene for insulin has been inserted into a vector	for the purpose of obtaining its protein product
only. Such a vector is called	
1. expression vector	2. suppression vector
3. storage vector for genomic library	4. none of the above
40. Expression vectors are those	
1. produce protein products	2. used for genomic libraries
3. used for chromosome synthesis	4. used for finger printing
41. E. coli is generally used for gene cloning because	
1. it supports the replication of recombinant DNA	
2. it is easy to transform	
3. it is free from elements that interferes with replica	tion and
recombination of DNA	
4. all of these	
42. An ideal plasmid to be used for recombinant DNA	technology must have
1. minimum amount of DNA	2. relaxed replication control
3. one recognition site for one restriction endonuclea	se 4. all of these
43. Transgenic organisms are	
1. produced by gene transfer technology	
2. extinct organisms	
3. naturally occurring and endemic	
4. produced by traditional plant breeding technique	
44. Transfer of recombinant plasmid into E. Coli cells	needs
1. heat treatment 2. UV rays treatment	3. Cacl2 treatment 4. lysis
45. Which of the following statement about a vector is	s correct
1. all vectors are plasmids only 2.	plasmids, phages can be used as vectors

3. fungi can also be used as vectors	4. cyanobacteria can also be used as vectors
46. Which of the following statement about plasmi	ds is correct?
1. plasmids are present in bacteria, archea& some	eukaryotes
2. plasmids are present in all organisms	
3. plasmids present in bacteria and phages	4. plasmids present in plants and animals
47. Which one of the following statement are not a	attributed to plasmids
1. they are circular DNA molecule	2. they have antibiotic resistant genes
3. they have the ability of autonomous replication	
4. they have DNA that is as long as chromosomal D	NA
48. Which one of the following statements about R	estriction Endonuclease is true
1. all endonucleases cut DNA at specific sites restri	ction
2. all restriction endonucleases cut DNA at random	sites
3. all restriction endonucleases join DNA segments	atspecific sites
4. all restriction endonucleases join DNA at randon	n sites
49. Restriction endonucleases cut DNA at a specific	site called
1. ligation site 2. Ori 3. recognition sequ	uence 4. replication site
50. Restriction endonucleases, when present in a h	ost cell act on foreign DNA molecule and cleave
them, but they do not act on host DNA molecule. It	: happens because
1. Restriction endonuclease cannot act on host DN	A.
2. Host DNA is packed into chromosomes	
3. Host DNA is methylated hence restriction endon	ucleases can't act.
4. Restriction endonucleases become inactive when	n they reach host DNA
51. The presence of Restriction endonucleases wer	e postulated in 1960 by
1. Khorana 2. Watson 3. Cri	ck 4. <mark>Arber</mark>
52. The scientists who won nobel prize for physiol	ogy for their discovery of restriction endonucleases
are	

1. Jacob and Monad	2. Smith, Nathans and Arber
c) Watson and Crick	4. Alec Jaffreys and Milstein
53. Restriction endonucleases are also ca	alled
1. molecular scissors	2. molecular stichers
3. DNA synthesis	4. polymerases
54. In restriction endonuclease EcoR1, "E	" stands for
1. extraction	2. the first letter of the genus in which it is present
3. endonuclese	4. endangered
55. EcoR1 cleaves DNA at	
1. 5/G AATTC3/	2. 5/GTT↓AAC3/CTTAA G5/3/CAA↑TTG5/
3. 5/C↓AATTG3/	4. 5/GGGCC↓T3/3/GTTAA↑C5/3/CCCGG↑A5/
56. Restriction endonucleases recognize	specific sequences on DNA called
1. non-coding sequences	2. satellites
3. palindromes with rotational symmetry	4. tandem repeats
57. Main tools required for recombinant	DNA technology are
1. vector, desired gene	
2. vector, desired gene, mRNA of desired	I gene, host, restriction enzymes, ligases
3. desired gene, host, vector	
4. vector, desired gene, mRNA of desired	I gene, host
58. An example for autonomously replica	ating mini chromosome is
1. virus 2. phage	3. Plasmid 4. lichen
59. Which one of the following statemen	its about plasmids is correct
1. plasmids are mobile	2. plasmids are made up of RNA and proteins
3. plasmids are present in eukaryotes	4. plasmids are present in fungi
60. DNA Ligase, used in recombinant DN	IA technology is obtained from

1. E.coli only 2. E.coli and also Ligase encoded by T4 phage 3. Saccharomyces 4. retroviruses 61. DNA finger printing was first developed by 1. David Suzuki 2. Khorana 4. Gilbert 3. Alec Jaffreys 62. Using genetic technique in forensic science is also called 1. genetic finger printing 2. In vitro culture 4. gene therapy 3. hybridoma technology 63. A technique called southern blotting is used in 1. monoclonal antibody production 2. In vitro culture 4. polymerase chain reaction 3. genetic finger printing 64. Genetic finger printing is useful in 1. identifying the criminals involved in rape, murder etc., 2. establishing the parentage of a disputed child 3. identifying illegal immigrants 4. all of these 65. RFLP is 1. restriction fragment length polymorphism 2. repeated fragment length polymorphism 3. renewed fragment length polymorphism 4. required fragment length polymorphism 66. VNTR is 1. variable nucleotide triplet repeat 2.variable nucleoside tandem repeat 3. variable nucleoside triplet repeat 4.variable number of tandem repeats 67. A small, 15-30 bases long nucleotide sequences used to detect the presence of complementary sequences in DNA sample during DNA finger printing is called

1. RFLP	2. Probe	3. VNTR	4. repor	rter gene		
68. A radio active pro	be used in DNA finger	printing con	tains			
1. 33 p	2. 14 C	3. 12 N	4. pUC1	8		
69. Electrophoresis, a technique used in DNA fingerprinting helps to separate						
1. DNA segments	2. cells from DI	NA	3. Tissues	4. RNA from DNA		
70. In DNA finger prin	70. In DNA finger printing, even a smallest amount of DNA obtained from samples collected at					
crime place, can be m	nultiplied into millions	of copies by	using a technique	called		
1. autoradiography		2. southern	blotting			
3. polymerase chain r	eaction	4. electroph	noresis			
71. In DNA finger prin	nting, the DNA from th	ne gel is trans	ferred to	for hybridization		
1. nitrocellulose mem	nbrane 2. agar	ose 3.	Autoradiogram	4. PCR		
72. Southern blotting is a technique used in genetic finger printing is called so because,						
1. the blotting is done from the south side 2. it was discovered by a scientist, E.M. Southern						
3. it was popular in So	outh America	4. it v	vas popular in sou	urthern countries		
73. During DNA finge	r printing, DNA nucleo	otides hybridi	zed with probe ca	n be detected through		
1. electrophoresis 2. polymerase chain reaction						
3. autoradiography			4. hybridor	na		
74. RFLP, VNTR, Prob	e are some of the terr	minologies ass	sociated with			
1. hybridoma technol	logy		2. tissue cu	ılture		
3. DNA fin printing			3. none			
75. Dolly, the first ani	imal produced throug	h cloning is				
1. camel	2. Rat 3. Cow	4. s	heep			
76. Some of the steps	s involved in DNA fing	er printing are	e listed below			
I. Extraction of DNA II. Collecting the sample						
III. Treating DNA with	REN	IV. GEL Ele	ctrophoresis			


V. Transfer segments of	of DNA to nitrocellulos	se membrane		
VI. Hybridize with prol	be	VII. Autoradiography.		
The correct sequence	is			
1. ii, iii, iv, vi, v, i, vii 2. ii, i, iii, vi, v, vi, vii				
2. iv, i, ii, v, iii, vi, vii 4. i, iv, v, ii, iii, vi, vii				
77. Gene therapy, a te	chnique that helps in			
1. saving endangered	species	2. curing genetic di	sorders	
3. clonal propagation		4. producing mono	clonal antibodies	
78. In 1990, the first go	ene-therapy was cond	ucted on a 4 year old girl in	US. The girl was suffering	
1. AIDS	2. CANCER	3. SCID	4. Malaria	
80. SCID, a disease can	be cured by Gene the	erapy is due to the deficienc	y of	
1. ADA enzyme	2. Insulin	3. Glucagon	4. Dystrophin	
81. Gene therapy, a te	chnique to cure inheri	ited diseases by		
1. repairing the faulty	gene 2. intro	oducing the correct copy of	the gene	
3. adding new cells to	the body 4. poly	merase chain reaction		
82. During gene thera	py, the possible ways	through which the genes of	can be introduced into the cell	
1. micro injection	2. some viruses	3. both 1 and 2	4. erythrocytes	
83. In one type of gene	e therapy, functional g	genes are introduced into th	e sperm or the egg. This is	
called				
1. somatic cell gene th	erapy	2. ge	ermline gene therapy	
3. vegetative cell gene therapy 4. gametic gene therapy				
84. In somatic cell gen	e therapy, the functio	nal genes can be introduced	into	
1. sperm	2. egg	3. any body cells	4. germinal cells	
85. The genes introduc	ced through somatic co	ell gene therapy are		
1. heritable	2. non-heritable	3. partially heritable	4.none of these	

	an genome project is		
1. to identify and sequence	ce of all the genes present	in the human body	
2. to introduce new genes	s to human beings		
3. to remove disease caus	sing genes from humans		
4. to improve techniques	of finger printing		
87. Bt cotton is a			
1. a cotton variety obtain	ed by crossing two differer	nt cotton plants	
2. a cotton variety brough	nt from South America		
3. an insecticide sprayed of	on cotton plant 4. a to	ransgenic cotton variet	SY .
88. In biotechnology, mas	ss culturing of cells / microl	bes can be achieved by	using
1. Test tube culture	2. Bioreactor	3. Autoclave	4. electrophoresis
89. A device in which a su	bstrate of low value is utili	ized by living cells or e	nzymes to generate a
product of higher value is	called		
1. bioreactor 2.	test tube culture	3. Electrophoresis	4. chromotography
	test tube culture	5. Liectrophoresis	4. Ciliolilotography
	or mass culturing of cells /		4. cirromotography
	or mass culturing of cells /		
90. A bioreactor known fo	or mass culturing of cells /	microbes must have	
90. A bioreactor known for 1. agitation for mixing of	or mass culturing of cells / cells and medium ure, aeration, etc.,	microbes must have 2. sterile condition	
90. A bioreactor known for1. agitation for mixing of3. regulation of temperate91. Bioreactors are used for	or mass culturing of cells / cells and medium ure, aeration, etc.,	microbes must have 2. sterile conditio 4. all of these	
90. A bioreactor known for1. agitation for mixing of3. regulation of temperate91. Bioreactors are used for	or mass culturing of cells / cells and medium ure, aeration, etc.,	microbes must have 2. sterile conditio 4. all of these	ns
90. A bioreactor known for 1. agitation for mixing of 3. regulation of temperate 91. Bioreactors are used for 1. large scale production 62. kill bacteria	or mass culturing of cells / cells and medium ure, aeration, etc., or of desired substances by us	2. sterile condition 4. all of these sing cells /microbes 4. to get che	ns
90. A bioreactor known for 1. agitation for mixing of 3. regulation of temperate 91. Bioreactors are used for 1. large scale production 62. kill bacteria	or mass culturing of cells / cells and medium ure, aeration, etc., or of desired substances by use 3. to store viruses s of tissue culture media ar	2. sterile condition 4. all of these sing cells /microbes 4. to get che	ns
90. A bioreactor known for 1. agitation for mixing of 3. regulation of temperate 91. Bioreactors are used for 1. large scale production 62. kill bacteria 92. The basic components	cells and medium ure, aeration, etc., for of desired substances by use 3. to store viruses s of tissue culture media are	2. sterile condition 4. all of these sing cells /microbes 4. to get che	ns
90. A bioreactor known for 1. agitation for mixing of or 3. regulation of temperate 91. Bioreactors are used for 1. large scale production or 2. kill bacteria 92. The basic components 1. micro and macro nutries 2. micro and macro nutries	cells and medium ure, aeration, etc., for of desired substances by use 3. to store viruses s of tissue culture media are	2. sterile condition 4. all of these sing cells /microbes 4. to get che	ns
90. A bioreactor known for 1. agitation for mixing of a 3. regulation of temperate 91. Bioreactors are used for 1. large scale production of 2. kill bacteria 92. The basic components 1. micro and macro nutries 2. micro and macro nutries 3. micro and macro nutries	cells and medium ure, aeration, etc., or of desired substances by us 3. to store viruses s of tissue culture media are ents, glucose ents, vitamins, agar	2. sterile condition 4. all of these sing cells /microbes 4. to get che	ns

93. Agar agar is a	dded to tissue culture n	nedia as			
L. carbon source		2	a growth regulator		
3. nitrogen source	e	4	4. solidifying agent		
94. Agar agar, use	from,				
L. a fungi	2. a bacteria	3. an algae	4. a virus		
95. Glucose is add	ded to the tissue culture	e media as			
L. growth regulat	or		2. carbon source		
3. solidifying ager	nt		4. an antibiotic		
96. Explant is					
L. any cut part of	the plant used in tissue	culture			
2. a plant extract	used in tissue culture				
3. a source of gro	wth regulators added t	o media			
4. solidifying ager	nt				
97. Totipotency re	efers to				
L. the ability of a	plant cell to arrest the	growth of a pl	ant		
2. the ability of a	plant cell to develop di	sease in plant			
3. the ability of a	plant cell to develop in	to a complete	plant		
4. the inability o	f a plant cell to develor	into a callus			
98. Somatic embr	yos are				
L. embryos devel	oped from zygote after	fertilization			
2. embryos devel	oped from egg without	fertilization			
3. embryo like str	ucture developed from	the cells of ca	allus		
1. embryo develo	ped by ovules				
99. In vitro cultur	e of plant parts need				
L. controlled envi	ronmental condition		2. aseptic condition		

100. An amorphous mass of loosely arranged thin wal	led parenchyma cell 3. Callose	s developing from explan
is called	3. Callose	
	3. Callose	
1. thallus 2. Callus		4. embryoids
101. The unique feature of callus is		
1. it gives rise to cells only	2. it can give ri	se to zygotic embryos
3. it can give rise to root, shoot and embryoids	4. it can give	e rise to flowers directly
102. Meristem culture helps in developing		
1. hybrid plants	2. viru	us free plants
3. disease resistant plants	3. tall	plants
103. Genetic variation observed in callus obtained fro	m tissue culture is ca	alled
1. morphogenesis	2. rhi	zogenesis
3. callogenesis	3. son	nacional variation
104. The name "Golden rice" is given to a rice variety	because	
1. it contains traces of gold		
2. it is obtained from areas where gold mining is done		
3. the seeds are golden yellow in colour because of th	e presence of β – ca	rotene
4. it is made of gold		
105. Golden rice is		
1. hybrid rice developed by traditional plant breeding		
2. a rice variety obtained by plant tissue culture		
3. a rice variety obtained by recombinant DNA techno	logy 4. None of t	he above

NOTE: Red marked option one is correct option.

